X-ray micobeam facility for single cells irradiations

S.Bozek^{1,2}, J.Bielecki¹, A.Wiechec¹, E.Lipiec¹, J.Lekki¹, Z.Stachura¹ and W.M.Kwiatek¹

1. Institute of Nuclear Physics, Polish Academy of Sciences

2. Jagiellonian University, Medical College

Krakow, Poland

COST MP0601 Dublin Meeting, 31 May 2011

Outline

- 1. Motivation
- 2. Facility overview
- 3. X-ray focusing
- 4. System aligment
- 5. Irradiation procedure movies

Motivation

Quantitative analysis of the response of living organisms to the **radiation** at the **cellular level** is facilitated with **microbeams**.

Facility overview

Open-type x-ray source

Titanium anode K_{α} of 4.5 keV Accelerating voltage 20-160 kV Target current 0.1 - ~24 uA 120° cone beam X-ray spot emission ~ 3 μ m

e – digital camera

Source is fixed The mirrors, sample, and microscope have 3D precise movement ability

X-ray focusing

The beam is focused with a multilayer optics.

Two multilayer elements in perpendicular arrangement. The beam image shows: a) direct beam

- b) beam reflected from single mirror
- c) beam reflected from both mirrors (the spot)

Beam preview

Scintillator material - 4 um layer of P43 phosphor

- 2 um aluminum coating

Focusing process is realised with x-ray sensitive CCD camera

Microscope alignment in the plane perpendicular to the beam

Microscope alignment in the beam longitudinal direction

1. The distance **A** is optimized for the highest magnification of the microscope (scintillator crystal grains are sharply visible).

2. The scintillator and microscope move along the beam direction with a constant distance **A** until the smallest spot in the screen is obtained. Then the focal plane of the microscope is the focal plane of the beam. Focal plane of the beam is found by observing the beam profile.

CELLS

Cells are seeded and irradiated on **35 mm** diameter **Petri dishes** with 10 mm round holes in the central part of the bottom.

The bottom is covered with the **1.5 µm thick Mylar foil**.

A population of about **10⁵ cells** in **4 µl medium** is seeded on the central part of the Mylar foil **16–18 hours before** the experiments.

Positioning calibration

A **resolution pattern** enables precise determination of the **micrometer per pixel calibration ratio**, as well as the resolution of the sample positioning system.

In the figure the average distance between maxima is $19,3 \pm 0.2 \text{ px}$. The distance between centers of sticks is **6 um**.

 \Rightarrow **0.311 um/px** calibration ratio \Rightarrow **60 nm** positioning resolution.

Positioner coordinates [mm]								
9,7	9,694	9,688	9,682	9,676	9,67	9,664	9,658	
Position of maxima in the pixels readout								
46	63	83	103	121	141	162	181	
66	83	103	122	141	160	181	199	
84	102	121	142	160	179	200	219	
104	121	141	161	179	199	220	238	
123	141	161	180	198	218	238	257	
142	160	180	199	218	237	258	277	

Irradiation procedure movie

Biological analysi

After irradiation, cells are being visualized under a fluorescent microscope.

Blue marker – living cells Red marker – dead cells

PC3 cancer cells irradiated with the proton microbeam

Acknowledgements

The research is supported by:

- □ Foundation for Polish Science and Technology
- European Cooperation in Science and Technology
- Polish Ministry of Science and Higher Education
- National Science Centre

Dose calculation - first approach with the NIST XCOM database

For **4.5 keV** mass attenuation coefficient for water is **58.34** cm²/g Linear attenuation coefficient is 58.34 cm²/g \cdot 1g/cm³ = 58.34 / cm

 $\mu = 58.34 \cdot 10^{-4}$ / um

Cell thickness **x** = **10 um**

For parallel monochromatic beam $\mathbf{I} = \mathbf{I}_0 \cdot \mathbf{e}^{-\mu \cdot \mathbf{x}} = \mathbf{0.94} \mathbf{I}_0$ The spot intensity is **5000 counts / sec** $5000 \cdot 6\% = \mathbf{300} \text{ photons/sec}$ deposited in cell. $300 \cdot 4.5 \text{ keV} = 1350 \text{ keV/s} = \mathbf{2,16} \cdot \mathbf{10^{-12}} \text{ J/s}$

Mass of 10 um in diameter water ball is 4,19 -10⁻¹² kg

The dose is about **500 mGy/s**

Source resolution measurements

Focal spot size measurements

Calculation of the spot size

Obtained curve **y** is the result of convolution of Gaussian distribution and step function.

$$y = \frac{P1}{2} \left(1 + erf\left(\frac{x - P2}{P3}\right) \right) + P4$$

P1 – beam intensity
P2 – coordinates of the peak maximum
P3 – width of the peak
P4 – bias

Equation	y =(P1/2)*(1+erf((x		
Adj. R-Square	0,99677		
		Value	Standard Error
В	P1	2472,35801	30,92598
В	P2	5,55279	8,98788E-4
В	P3	0,02081	0,00153
В	P4	11151,82192	21,49682

Spot size

