Characterisation of the X-ray microprobe in Krakow and properties of the beam focusing system

Sebastian Bożek ^{1,2}, Jakub Bielecki ¹, Zbigniew Stachura ¹, Janusz Lekki ¹, Roman Hajduk ¹, Henryk Doruch ¹, Wojciech M. Kwiatek ¹

¹ The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

² The Jagiellonian University, Medical College

Outline

0. Idea of the experiment

- **1. X ray source** Hamamatsu L9191
 - Tube parameters, spectra
 - Ti-K α line intensity optimization
 - Tube spot size determination

2. X ray focusing system – Kirkpatrick-Baez mirrors

- Zone plates vs multilayer mirrors
- Focal spot size measurements

3. Sample positioning

Idea of the experiment

• Research on consequences of an x-ray irradiation for a single biological cell and a cells population.

• Comparison of the ionization density and determination the difference in the number of double strand breaks in cells between particles and x-ray irradiation

	Proton microbeam	X-ray microbeam
Ionisation density	high	low (photoelectrons)
Mean detph of penetration in cells	100 μm total range for 3 MeV protons	half of intensity at 100 µm for 4.5 keV x-rays

X-ray source – Hamamatsu L9191

Tube resolution measurements

The 500x500 μ m sized pattern tile situated in the front of the tube gives the information about the tube resolution.

Image intensity at edges of pattern profile (CCD pixels read-out) is the result of the convolution of the normal distribution and the Heaviside (step) function.

Tube spot size

The tube focal spot size depends on the accelerating voltage and the focusing current of electromagnetic lenses.

Optimal spot size (about $2 \mu m$) was obtained at 100 kV.

Focusing x-rays – considered methods

Fresnel zone plates

Zone plates are better for low energy radiation. At high energies the plate should have:

• very small diameter

• high aspect ratio y/x for the smallest structures at the edge of the plate (~10 for 4.5 keV)

Multilayer focusing mirrors

Multilayer mirrors provide Bragg reflection constructive interference along the whole mirror elliptical surface. Due to the Bragg reflection condition the system works also as a monochromator.

 $2d\sin\theta = n\lambda$

Focusing x-rays by multilayer mirrors

Kirkpatrick-Baez multilayer mirrors

Multilayer mirrors manufactured by the Rigaku Innovative Technologies Inc. (USA) with motorized stages are used in the cells irradiation facility. The focusing distance is **15 mm**.

Focal spot size measurements

Sample positioning

PI motorized translation stages

- motion range: 25 mm
- minimum incremental motion: 50 nm
- controlling: PI software or LabVIEW

Two elements combined together enable movement in a plain

Qioptiq Zoom 160 Optical System Microscope

- motorized zoom and focus
- SHOTT's coaxial light source
- field-of-view (zoom): 16:1
- maximum resolution: **900 lp/mm**
- camera connection

Watec WAT-231S color camera

- weight: 160 g
- resolution: **450x480 px**
- video and Y/C signals output
- gamma correction and iris level control